相关知识
科谱知识:化学大发现(3-2)2

 

 

惰性气体

 

天文学家让逊和洛克尔在观察日食时从太阳光谱中发现了一种新谱线,给物理学家出了一个难题,很长一段时间谁也无法解释清楚。人们只好猜测太阳里可能有一种新元素,于是就把它定名为“氦”(希腊文太阳之意)。

1892 年,洛克尔突然收到一封信,信中提出一个无法解释的疑问,洛克尔就干脆把它发表在自己主办的《自然》杂志上:“今有一事特向贵刊和贵刊的读者求教。我最近多次用两种方法制取氮气,但它们的密度却总不一样。既然是同一物质为什么会有两种密度呢?瑞利 1892 年9 月24 日”

瑞利(1842~1919 年)是谁呢?他是剑桥大学的教授,他有极好的耐心,因而他就选择了一个极需耐心的研究题目,便是测量各种气体的密度(密度是指1 升气体在0℃和一个大气压下的质量)而他的实验室里也有一架当时极好的天平,其灵敏度可达到万分之一克。他制成了一个大玻璃球,然后用真空空泵将球内空气抽空,再称出球重,算出体积,然后充进各种气体,称出净量后,求出密度。这是一种重复枯燥的事,他却能不厌其烦。每种气体都要称几次,并且气体每次都是以不同的方法制得,如果测量的结果都一致了,他这才放心。他就这样对着那个玻璃球,抽了又充,充了又称,称了再算,从1882 年开始一直干了整整10 年。这工作虽然枯燥繁琐,然而那些气体在他的手中却都有了一个精确的密度,心情倒也十分愉快。不想有一次,瑞利这个办法却再也不灵了。他在测氮气密度时,第一个办法是让空气通过烧得红热的装满铜屑的管子,氧与铜生成氧化铜,那么剩下的就是氮气,密度为每升1.2572 克。第二个办法便是让氧气通过浓氨水,生成水和氮气,这种氮气的密度为每升重 1.2560 克,比空气中的氮轻了0.0062 克。瑞利百思不得其解,便向《自然》杂志写了以上那封信。信发表后,瑞利一面盼着回音,一面不停地重复这个实验。但他的信在杂志上公布了二年之久,竟没有收到一封回信。瑞利实在等得不耐烦了,便带上他的仪器直奔皇家学会。1894年11 月19 日,他向许多化学家、物理学家当面作了一个关于“两种氮气”的报告。这一招还真灵,报告刚完,便有一个化学家拉姆赛(1852~1916 年)自告奋勇提出帮忙,他说:“两年前我看到你那封信还没有弄懂其意,今天我才明白,你从空气中得到的氮气一定含有杂质,因此密度会稍大。”这时瑞利恍然大悟:杂质不就是未发现的新物质吗?瞬间,蒙在心头的愁云早已化成了眉梢的笑意。瑞利正喜不自禁,有一个叫杜瓦的物理学家又走上前来告诉他说:“老兄,这个问题卡文迪许(1731~1810 年)早在100 年前就曾提出过,我建议您去查找他留下来的笔记,对您或许有帮助。”瑞利现在正是在卡文迪许实验室工作,而那些旧笔记就锁在他身边的柜子里。他一听这话更是喜上加喜,连忙收拾东西回剑桥去了。

卡文迪许是科学史上的一个怪人。他出身于贵族家庭,很有钱,然而他却一不做官,二不经商,三不交际。他把钱都用来买科学仪器和图书。他还建了一个很像样子的私人图书馆,任何人都可以来借书,但是一定要按时归还,就是他自己看书也要先打个借条,办个手续。他的穿戴全是上个世纪的打扮,因此一出门就有许多小孩跟在后面,又叫又笑。他一辈子没有结过婚,不知是缺根什么神经,他从心里厌恶女人,家里雇着女仆,却又规定不许与他见面。每天早晨,他将吩咐女仆办的事写在纸上,然后放在固定地方。吃饭时女仆便先摆好饭菜退出餐厅,他再进来用餐。等他离开后,才允许女仆进来收拾碗筷。一天,他在楼梯上与女仆偶然相遇,竟然气得发抖,返身找到管家,吩咐再造一个楼梯,男女各行其道。他思维怪异,一生的发现有很多,比如:第一个从水中电解出氢、氧,并测出比例;第一个测出地球的密度等等。然而他却极少公开发表,宁肯让这么多成果掩藏在尘封的笔记本里。

直到他死后50 年,麦克斯韦因受命筹建卡文迪许实验室,才十分吃力地将这些“天书”一本本地整理以后发表。

瑞利赶回剑桥后,一进实验室便开箱启柜,抱出那一堆纸色变黄的笔记,终于在皇家学会1784 年至1785 年的年报中找见卡文迪许的一篇《关于空气的实验》,而在其笔记中还看到了更为详细的实验记录。原来这个怪人想出了这样一个怪办法,他将一个U 形管的两头浸在两个装有水银的酒杯里,架起一个天桥,再用当时还比较原始的摩擦起电机从两头通电,U 形管中的氧气和氮气便在电火花一闪时化合成红色的二氧化氮,接着又滴进一种特殊溶液将其吸收,再通氧,再化合,如此反复多次。卡文迪许和他的助手们轮流摇动发电机,整整摇了三个星期,最后在弯管中还剩下一个很小的气泡,任你怎样通电,它也再无丝毫的表示。卡文迪许当时便断定,空气中的氮气(当时叫浊气)决不是单一物质,一定还包含有一种不与氧化合的气体,而且他还算出了这种气体不会超过全部空气的1/120。啊,原来如此。

瑞利看过卡文迪许的笔记本后,喜得手直发痒,立即架起仪器,重做这个109 年前的气泡试验。由于他现在有了最新的设备,这气泡很快就得到了。他又将此事通知拉姆赛,拉姆赛用其他方法也获得了同样的气泡。看来,这东西肯定是一种还未发现的元素,并且有可能就是洛克尔和让逊在太阳上发现的那个氦。现在可用得上基尔霍夫发明的那个雪茄烟盒子照妖镜了。他们兴冲冲地取来分光镜,谁知不照犹可,一照心里凉了半截。原来瑞利以为这回他一定找到了那个已有26 年没有发现得了的氦,却不想分光镜里的光谱却又是另外的一种,因此浑身凉了半截。但是当他再仔细观察,发现这谱线是橙、绿两条,和其他已有元素也对不上号,心情不禁又激动起来。他没有抓住“氦”,却无意中发现了另一种新元素。瑞利便给它起了个新名字叫“氩”,这个字在希腊文里是不活动的意思。同时拉姆赛在伦敦也找到了氩。这是1894 年8 月的事。

瑞利和拉姆赛找见氩的消息在外界传出后,一位化学家给拉姆赛写信说,钇铀矿和硫酸反应会生成一种气泡,这种气体不能助燃,也不能自燃,说不定就是你的氩。拉姆赛连忙进行试验,发现这种气体的光谱竟和氩又是不同。他实在想不出这又是一种什么新玩艺儿,便连同装着新气体的玻璃管和分光镜一起送到当时最权威的光谱专家克鲁克斯处,请他鉴定。1895 年3月23 日,拉姆赛正在实验室里工作,突然收到一份电报:“你送来的气体,原来就是氦气——克鲁克斯。”

真是想不到追寻了27 年的氦,倒这样轻易地被找到了。然而拉姆赛脾气很倔犟,他总觉得氦这样躲躲藏藏地和他作对,虽然找到了也不痛快。并且,氦既然不轻易和其他元素结合,那么它一定能独立存在于空气中,因此他决心要在空气中直接找到氦。他知道氦、氩都有惰性,不易通过化学反应将他们分离,因此他换了一个物理的办法,便是将空气冷凝到零下192℃,使之变为液体,然后根据它们蒸发的先后次序不同,再将他们一一分离开去。

这天上课了,拉姆赛教授走进课堂,便在桌上放了一个特制的杯状大器皿。里面装的是冷凝成液态的空气。学生们从没有见过空气会像水一样盛在杯子里。因而都瞪大眼睛看教授要做些什么,这时拉坶赛拿起一个小橡皮球在器皿里浸了浸,再往地上一扔,球没有像往常那样蹦起来,却嚓啦一声跌个粉碎。学生们惊得一个个眼睛溜圆。教授却不慌不忙,又往一只装满水银的试管里插进一根铁丝,连试管一起往器皿里一泡,再抓住铁丝往外一拉,竟拉出一根水银“冰棍”,拉姆赛又拿起一颗钉子,用这根冰棍,当当几下,就将钉子钉到墙里,这时教室里又响起一片笑声。然而不等笑声消失,教授又从口袋里掏出一块面包,当大家还没有看清是怎么一回事,面包却早在器皿里打了一个滚,又捞了上来。拉姆赛说:“快将窗帘拉上!”只见室内一暗,这面包竟发出天蓝色的光。这时学生们却有点急了。那宝贵的液态空气越蒸发越少了,难道花那么多钱就为今天变一阵魔术吗?不想,拉姆赛干脆宣布实验结束,大家回家吃午饭。他将那杯液态空气大敞着口,锁上门,扬长而去。

原来拉姆赛早就有了主意。他想氦一定比氧、氮蒸发得慢,那么最后留在器皿底下慢慢来收拾也不会跑掉。到下午,拉姆赛将器皿底下那点已不多的空气经过除氧、除氮处理后,收得一个小小的气泡,然后再用分光镜一照,氦没有找见,却又出现了一种新谱线——这一定又是一种新元素了。真是阴差阳错。拉姆赛把这种新元素取名为“氪”(希腊文隐藏的意思)。这天是1898 年5 月24 日。

没有找见氦,拉姆赛并不气馁。他想,没有留在最后就说明已先蒸发走了。这次他学聪明了,将液态空气一点点蒸发分馏,然后逐次抽样,再用分光镜检查。他首先找出一种新元素便把它定名为“氖”(希腊文“新”之意),然后终于找见了那个最难寻的氦,接着在1898 年7 月12 日又找见了“氖”(希腊文“陌生”之意)。就这样拉姆赛用分馏法加光谱法,在不到半年内就连续发现了3 种不易为人看到的惰性元素。到此为止,那个氦已经让人发现过3 次了。第一次在太阳光谱里,第二次在钇铀矿里,第三次在空气里。因为找它,却又牵出了一串惰性元素。后来拉姆赛说:“寻找氦让我想到了老教授找眼镜的笑话。他拼命地在地下找,桌子上找,报纸下面找,找来找去,眼镜就在自己的额头上。氦被我们找了一大圈,原来他就在空气里。”

这些惰性气体是一个家族,由于它们在空气中的含量很少,因此也称为稀有气体。

 

 

原子序数就是质子数

 

原子结构的秘密被人们初步揭开以后,不少科学家都在考虑这样一个问题:元素的原子结构同它在周期表里的座位有没有什么关系?

一位年轻的英国物理学家莫斯莱,首先在这个问题上做出了重大的贡献。

在莫斯莱以前,有的科学家已经注意到,用不同的元素做成的X 射线管中的靶子(对阴级),发射出来的X 射线的穿透能力是不同的,原子量越大的元素,发出的X 射线的穿透能力越强。这种具有特殊穿透能力的X 射线被叫做特征X 射线。

1913 年到1914 年间,莫斯莱系统地研究了各种元素的特征X 射线。他借助于一种叫做亚铁氰化钾的晶体,摄取了多种元素的X 射线谱。他发现,随着元素在周期表中的排列顺序依次增大,相应的特征X 射线的波长有规则地依次减小。莫斯莱根据实验的结果认为,元素在周期表中是按照原子序数而不是按照原子量的大小排列的,原子序数等于原子的核电荷数。

原子序数原来就是原子核里的核电荷数!莫斯莱的这个发现,第一次把元素在周期表里的座位和原子结构科学地联系在一起了。这个发现,给科学家们展现了一个广阔的研究领域。可惜的是,这位勤奋而又有才能的青年科学家,竟然在27 岁的时候,就牺牲在第一次世界大战的战场上了。

后来,在发现了质子和中子以后,人们终于认识到,决定一个元素在周期表中的位置的,只是它的原子核中的质子数。

例如,氢元素的原子核里只有1 个质子,核电荷数是l,所以它必然就排在周期表里的第1 位。碳元素的原子核里有6 个质子,核电荷数是6,因此它就应该排在周期表里的第6 位。而钾元素的原子核里共有19 个质子,核电荷数是19,当然它就是周期表里的第19 号元素了。

反过来也一样,周期表里第几位上的元素,原子核里一定有几个质子。例如,氯是周期表里的第17 号元素,它的原子核里也就有17 个质子,核电荷数自然也就是17。

可以说,有了这个发现,就解开了周期表当中几个长期叫人困惑的谜!第1 个被解开的谜,就是那个让人大伤脑筋的问题——氢和氦之间还能不能再有新元素。

根据这个发现,人们知道氢原子核里只有1 个质子,应该排在周期表里的第1 位,而氦原子核里有2 个质子,当然应该占据第2 位,虽然在周期表上它们的中间隔着好大一块空地,可是质子数在1 和2 之间的原子,可以肯定不会再有了。

第2 个被解开的谜,就是几对元素的顺序倒置问题。前面已经说过,门捷列夫在发现元素周期律的时候,是按照元素的原子量大小的顺序编排元素的。按照当时大多数化学家测定的数值,钴的原子量是59,镍的原子量是58.7;碲的原子量是128,碘的原子量是127。按照原子量大小的顺序,镍应当排在钴的前面,碘应当排在碲的前面。可是,按照同族元素应该具有相似的性质这个规律(拿化合价来说,碲的最高价为+6 价,应当同硫、硒等排在一族;碘的最高价为+7 价,应当同氯、溴等排在一族),他们排列的次序就应该颠倒过来。后来,还有氩(39.9)排在钾(39.1)的前面和钍(232)排在镤(231)的前面这两个原子量的顺序颠倒的问题。

不过,当年门捷列夫对于元素的性质随着原子量的增大而发生周期性的变化这一点是深信不疑的,他始终认为一定是人们把钻和镍、碲和碘、氩和钾的原子量测定错了。所以,在他自己排的周期表中仍然是把钴放在镍的前面,把碲放在碘的前面,把氩放在钾的前面。他在生前一直在期待着化学家给钾、镍和碘增大原子量,或者给氩、钴和碲减小原子量。但是,它们的原子量确实是氩大于钾,钴大于镍,碲大于碘。所以,多少年来,这个所谓的顺序倒置问题就成了一个不解之谜。

现在,莫斯莱等人的新的发现,一下子就解决了这个难题:元素在周期表中应该按照它的原子序数,也就是按照原子核中质子数的顺序来排列,而不应当按照原子量的大小来排列。

钾原子核里的质子数恰好比氩多1、碘比碲多1,镍又比钻多1。所以,氩和钾、碲和碘、钴和镍的顺序完全是正确的,并不存在什么颠倒问题。不过,这个问题总让人觉得没有彻底解决。因为绝大多数的元素都随着原子序数的增大,随着质子数的增多,原子量也相应地增大。只有这几对元素的原子量没有按照这个顺序增大,反而是原子量大的排在了前面,原子量小的排在了后面,这是为什么?

后来弄清楚了,这个问题的关键也是在原子核里。

原来,同一种元素的原子核里面具有相同数目的质子,也就是具有相同的核电荷数,核外的电子数目和它们的分布状况当然也完全相同,因而就具有相同的化学性质。而不同元素的质子数一定不同,核电荷数和核外电子数也一定不同,它们的化学性质也就不同了。因此,在化学上给元素下的定义是:含有相同质子数目的一类原子的总称。

可是,对于原子核的进一步研究却发现,同一种元素的的原子里,质子数虽然一样多,但中子的数目却不完全相同。

拿氢元素来说吧,它所有的原子里,都只有1 个质子,可中子数却不一样。有的氢原子里根本没有中子,有的氢原子里有1 个中子,还有的氢原子里竟然有两个中子!这3 种氢原子的化学性质几乎完全一样,很难区别。就好像一胎生下来的3 个孪生兄弟——三胞胎,长的一模一样。中子数不同的氢原子就是原子世界中的三胞胎。原子也有多胞胎!

原子里的多胞胎,质子数完全一样,属于同一种元素,在周期表上当然占据同一个位置,因此,人们也把它们叫做同位素。

同一种元素的几个同位素虽然化学性质相同,但在物理性质上却不完全相同。比如,它们的原子质量就一定各不相同。那些在原子核中含中子多的原子,原子质量就大些,含中子少的原子,原子质量就要小些。

在氢的同位素中,不含中子的称为氢—1,含有1 个中子的称为氢—2,含两个中子的称为氢—3。这就好像三胞胎的妈妈把她的孩子们叫成老大、老二、老三一样。当然,这是小名。它们除了小名以外,还各有各的大名。氢—1 叫做氕,氢—2 叫做氘,氢—3 叫做氚。

氕、氘、氚虽然各自的原子质量不同,但它们的化学性质几乎完全相同。在自然界里,它们也都混在一起,难分难解。所以,平时我们所测出来的氢的原子量,就是这3 种原子质量的平均值。

现在已经知道,绝大多数的元素都有两种或两种以上的同位素。因此,绝大多数元素的原子量,都是它的各种同位素的原子质量的平均值。

自然界的各种元素,一般来说,质子数大的,原子量也比较大;质子数少的,原子量也比较小。所以,在周期表中,大多数元素都是随着质子数的增大,原子量也同时增大。可是,有的元素,虽然质子数较小,但是在自然界,它的几个同位素中较重的同位素占的比例大,因而几种同位素的原子质量的平均值(就是这种元素的原子量)也就要大些。而有的元素虽然质子数比较大,但由于较重的同位素占的比例小,结果这种元素的原子量反倒要小一些了。

拿氩和钾这一对元素来说,氩的质子数(18)要比钾的质子数(19)小,但是在自然界中,它的重同位素占的比例大——氩-40 占99.60%,它的原子质量为39.96 个原子质量单位(u),氩-38 占0.06%,它的原子质量为37.96%(u),氩-36 占0.34%,它的原子质量为35.97(u)。这样一来,从原子量看,在周期表中排在后面的钾反倒比排在前面的氩要小,这就是曾经在一个相当长的时期里解释不了的顺序倒置问题。在同位素被发现以后,特别是在原子核的质子中子结构被阐明以后,这个问题就很容易理解了。钴和镍、碲和碘、钍和镤的倒置问题,也都是由于同样的原因造成的。这个谜终于被彻底解开了!

 

 

探究电子排布的秘密

 

人们在研究原子核的同时,也对核外的电子进行了研究。知道了核电荷数,也就是知道了核外电子数,因为这两者总是相等的。但是这些电子在原子核外的状态是怎样的呢?它们是怎样分布的,怎样运动的呢?这还是一个秘密。

从大量的科学实验的结果中,人们知道了,电子永远以极高的速度在原子核外运动着。高速运动着的电子,在核外是分布在不同的层次里的。我们把这些层次叫做能层或电子层。能量较大的电子,处于离核较远的能层中;而能量较小的电子,则处于离核较近的能层中。

人们还发现,电子总是先去占领那些能量最低的能层,只有能量低的能层占满了以后,才去占领能量较高的一层,等这一层占满了之后,才又去占领更高的一层。

第1 层,也就是离核最近的一层,最多只能放得下两个电子。第2 层最多能放8 个电子。第3 层最多能放得下18 个电子,而第4 层放的更多,最多能放32 个电子,? .现在已经发现的电子层共有7 层。

不过,当人们对很多原子的电子层进行了研究以后发现,原子里的电子排布情况,还有一个规律,这就是:最外层里总不会超过8 个电子。

当人们把研究原子结构,特别是研究原子核外电子排布的结果同元素周期表对照着加以考察的时候,发现这种电子的排布竟然和周期表有着内在的联系。

为了说明的简便,我们只拿周期表中的主族元素同它们的核外电子排布情形对照着看一看。先从横排——周期来看:

在第一周期中,氢原子的核外只有1 个电子,这个电子处于能量最低的第一能层上。氦原子的核外有两个电子,都处于第一能层上。由于第一能层最多只能容纳两个电子,所以,到了氦第1 能层就已经填满。第一周期也只有这两个元素。

在第二周期中,从锂到氖共有8 个元素。它们的核外电子数从3 增加到11。电子排布的情况是:除了第一能层都填满了两个电子而外,出现了一个新的能层——第二能层;并且从锂到氖依次在第二能层中有1~8 个电子。到了氖第二能层填满,第二周期也恰好结束。

在第三周期中,同第二周期的情形相类似。除了第1、2 两个能层全都填满了电子外,电子排布到第三能层上,并且从钠到氩依次增加1 个电子。到了氩,第三周期完了,最外电子层也达到满员——8 个电子。

再从竖行——族来看:

第一主族的7 个元素——氢、锂、钠、钾、铷、铯、钫的最外能层都只有1 个电子,所不同的只是它们的核外电子数和电子分布的层数。氢的核外只有1 个电子,当然也只能占据在第1 能层上;锂有两个能层,并且在第2能层上有1 个电子;钠有3 个能层,并在第三能层上有1 个电子;? .钫有7 个能层,并且在第三能层上有1 个电子。

由于在化学反应中,原子核是不起任何变化的,一般的情况下,只是最外层电子起变化。第一主族由于最外层都只有一个电子,因而它们表现出相似的化学性质,这当然就是很自然的事情了。

完全类似,第二主族各元素的最外能层都有两个电子,第三主族各元素的最外能层都有3 个电子。? .

当初,门捷列夫曾经在他自己编写的化学教科书《化学原理》中,用下面这句话来说明他发现的元素周期律:元素以及由它形成的单质和化合物的性质周期地随着它们的原子量而改变。后来,由于物理学上一系列新的发现,人们对元素同期律得到了新的认识,元素以及由它形成的单质和化合物的性质周期地随着原子序数(核电荷数)而改变。

最后,在弄清了原子核外电于排布的规律以后,人们对元素周期律和元素周期表的认识就更加深入了。现在,人们可以从理论上来解释元素周期律了。原来,随着核电荷数的增加,核外电子数也在相应地增加;而随着核外电子数的增加,就会一层一层地重复出现相似的电子排布的过程。这就是元素性质随原子序数的增加而呈现周期性变化的原因。

如今,人们不仅知道一个元素所在的周期数就是它的核外电子排布的能层数,主族元素的族数就是它最外层的电子数,而且也能解释元素的化合价为什么也随着原子序数的增加而出现周期性的变化。就连为什么同一周期的各个元素,从左到右金属性逐渐减弱,非金属性逐渐增强,为什么同一周期的各个元素,从上到下金属性逐渐增强,非金属性逐渐减弱这一类的问题,也能够得到令人满意的解答了。

原子结构的知识像一把钥匙,打开了元素周期表里的秘密之锁,使它进入了电子时代。

 

 

破译化学密码

 

早在周期表发展的初期,化学密码的破译就在预言和寻找新元素的工作中发挥了惊人的威力。

20 世纪以来,科学家们甚至根据科学和生产上的需要,直接根据元素周期表,也就是那些化学密码进行了不少成功的工作。

这里举几个真实的例子讲一讲。

1925 年以前,由于电气工业的迅速发展,很需要一种金属作特殊灯丝材料,这种新金属应该比钨更优良才好。科学家按照这种金属应该具有的性质,推测出了它在周期表上应该“坐”的位置,就是和钨处在邻居地位的第75号那个未知元素。人们又返过来用这个位置上的密码推测了可能发现它的途径和方法,终于在1925 年找到了它。这就是金属元素铼。

铼是在1925 年几乎同时被两组科学家发现的。前一组是3 位德国科学家,他们注意到在铂矿和一种叫铌铁矿的矿石中存在着72~74 号元素及76~79 号元素。根据元素周期律,他们判断,未知的75 号元素可能会在其中存在。经过长时间的工作,铼的确被他们在这些矿石中发现了。新元素的名称就是以德国著名的河流莱茵河的名字命名的。

另一组从事寻找75 号元素的,是几位捷克斯洛伐克科学家。他们根据同族元素性质相似这个规律推断,含有锰的矿物,也会含有铼。而且由于性质上的相似,锰和铼必然很难分离,这就有可能使锰的化合物中常常带有微量的铼。于是,他们采用一种当时新发明的用来测定微量物质的方法——极谱分析法分析了许多种锰矿,终于找到了铼的踪迹,并分离出了铼。

周期表上的密码,不仅可以用来发现新的元素,也可以用来寻找新的化合物。在这方面,一个很好的例子,就是新的冷冻剂的发现。

早期致冷机中常用的冷冻剂是氨和二氧化硫等物质。它们因为有强烈的刺激性臭味和较为严重的毒性,并且对于冷冻机械有强烈的腐蚀性,早就不受人们的欢迎了。可是,新的怜冻剂又该从哪儿去寻找呢?

为了寻找新的冷冻剂,人们也来请周期表帮忙了。

人们已经知道,同一周期里的元素,非金属性越强,它的气态化合物的稳定性也会越大。而在同一主族中,却是非金属性越强,化合物的毒性越小。

根据这种规律,科学家们展开了用氟化物作为冷冻剂的研究。因为氟在第2 周期中是最强的非金属,所以它的气态化合物是稳定的,它在第7 主族中是非金属性最强的,因此毒性应该是最小的,或者说,氟化物应该是最理想的冷冻剂。根据这个推测,人们很快就发现了一个理想的含氟冷冻剂——氟利昂,学名叫二氟二氯甲烷。试验表明,它既稳定而又无毒性,同时,冷冻效率又很高。这个发现给工业上解决了一个大难题。

同族元素具有相似性质这个规律,在许多科学部门里发挥了作用。例如,人们在寻找新的药物时,它帮了大忙。

人们早就知道砷化合物是一种毒剂,常用的毒药砒霜就是三氧化二砷。但是,砷的化合物也有不少缺点。人们需要寻找一些新的毒剂来代替它,以便能更有效地杀灭对人类有害的动物和昆虫。应该到哪里去寻找新的毒剂呢?

从周期表上看,和砷处于同一主族的元素,上有磷,下有锑,它们的化合物也应该具有毒性而又和砷化物不完全相同。对含磷化合物和含锑化合物的研究,使人们得到了一批又一批全新的农药。

在矿物的勘探上,周期表也大有用处。

地质学家们发现,性质相似的金属,往往藏在同一种矿物中,例如铜矿中常常含有银和金,钡盐矿物中也常常是既有锶也有钙? .铜、银、金、钙、锶、钡,不都是同族元素吗!这个事实启发了地质学家,他们想到,对于那些稀有的和难于找到的金属,首先应该看看它们在周期表中的位置,看看它们的同族元素以及在邻近的位置上是些什么元素。如果这些元素的矿物中,有些是富矿或是容易得到的矿物,那就应该仔细查查这些矿物,说不定那些难于找到的稀有金属就藏在这些矿物当中呢!应用这种方法,地质学家们曾不止一次地找到了他们要寻找的稀有金属。

还有,在发展无线电电子学方面,周期表也曾建立过卓著的功勋。人们就是在周期表上从铝到砹那一条斜线上,找到了一个又一个介于金属和非金属之间的两性元素,它们都是良好的半导体。

不仅如此,周期表还帮助人们发展了新的学科。例如,具有重要军事意义的有机硅化学,就是在同族元素性能相似这个规律启发下,以含碳有机物为“模板”发展起来的。

应用周期表在各门学科中解决难题的事例,应用周期表发展了新学科的事例,还有很多很多,在这里就不再一一列举了。

 

 

月亮元素

 

贝采利乌斯是瑞典著名化学家。他一生中发现了硒、钍等化学元素,并测定了43 种元素的原子量,提出了现代原子符号,并且第一次排列了当时已经知道的元素的原子量表。

在距斯德哥尔摩西北约60 公里的地方,有一个叫法龙镇的地方。法龙镇是瑞典历史悠久的一个矿区。它从13 世纪起就是一座重要的铜矿,同时还有黄铁矿的开采。瑞典的一些重要的硫酸工厂,都从这里获取黄铁矿的原料。

1817 年,化学家贝采利乌斯曾参加了一家硫酸工厂的经营。这家工厂所用的原料就是来自法龙镇的黄铁矿。工厂的老板毕尤格林先生发现,利用法龙镇的黄铁矿所得的硫磺,在制取硫酸过程中,总会在铅室的底部凝结有红色粉末状物质:如果改用别处的硫磺为原料,在铅室的底部就没有这种现象发生。后来,毕尤格林就找了几位化学家一起去研究探讨这一现象。他们认为,在铅室底部沉积的物质中,可能含有砷。毕尤格林害怕烧灼砷会造成毒害事故,因此就不再采用法龙镇出产的黄铁矿了。

贝采利乌斯以一个化学家所特有的敏感,预见到这里面一定有在科学上值得探讨的内容。于是,他放弃了正在写的一册化学教程的工作,立即转入到分析这“红色物质”的工作中来。他首先燃烧了250 千克法龙镇出产的黄铁矿,便得到了一定数量的硫磺。所沉淀的红色粉末,却只有3 克左右。他仔细地分析了这3 克物质,发现其中最主要的成分仍然是硫磺。贝采利乌斯把燃烧后的灰烬收集起来,再将它用试管加热。哎呀!这是什么味道?一股腐败蔬菜的臭味,直冲鼻子。贝采利乌斯被呛得有点受不了,头也痛起来了。

他马上打开了实验室的窗户,苦苦地思索着。在他所熟悉的物质中,哪种元素燃烧后的味道是这样的呢?难道这正是“地球”?

贝采利乌斯在激动之余立即挥笔写信给在英国的好友——伦敦的马塞特博士。告诉对方,被德国化学家克拉普罗兹命名为“地球”(拉丁文愿意)的元素碲也在这里发现了。信刚刚寄出去,他却又疑惑起来了。红色粉末燃烧的气味虽与克拉普罗兹实验时发现的气味相同,但并没有分离出碲的单质来。怎么能肯定里面一定是碲呢?于是,他开始深深地责备自己的不慎重。

下一步的工作应该是找到碲单质,“以便对这种物质有一个较准确的概念”。于是,贝采利乌斯便把铅室底部所沉积的红色粉末全部取出来,不厌其烦地进行了反复实验。经过多次认真分析、比较,认为这发出臭味的果然不是碲,而是一种从未被人们所认识的新的元素。1818 年2 月6 日,贝采利乌斯写了一封信给马塞特博士,在信中他纠正了前次信中的错误,并把自己的新发现告诉给这位英国化学家。

“能够放出一种特殊臭味的那种物质,据我审慎研究之后得出结论,它是一种不溶于水的棕色物质? .是一种具有燃烧性的单质,以前无人发现过,因此我特命名为Selenium(硒)。此字系由 Selene(月亮)变化而来,以表示此种物质与碲的性质相似。硒的化学性质,介于硫与碲之间;如再仔细加以比较,则与硫相近之点比碲更多些。”

自硒这个元素问世之后,很快就在人类生产和生活上发挥出它的重要作用。在城市马路的十字路口,都安装有指挥车辆行驶的红绿灯。而所谓“红灯”,就是在无色成分的玻璃里加一定量的硒制成的。在一些高大建筑物如博物馆、剧场的顶端也常常安装含有硒的玻璃制着的五角星,夜间看去,它像宝石似的闪闪发光。另外,硒对光非常敏感,在充足阳光的照射下,它的导电效能要比黑暗时大1000 多倍!科学家就利用硒对光敏感的特殊功能,制成了光敏电阻、光电管、光电池等,用在自动控制、电视等技术上。硒的半导体功能更不能忽视,用它做成的用于无线电检波和整流的硒整流器,具有耐高温、电稳定性好,轻巧,能经受超负荷等优点。硒还被应用于橡胶工业、染料工业方面。

贝采利乌斯为我们找到了一种多么重要的元素啊!在这位化学家的一生中,除了发现月亮元素硒之外,还在他那间厨房兼“实验室”中,先后发现了硅、钍、铈、锆等4 种元素。

一个化学家,在他一生中能做出这样多的贡献,这在化学史上也是很少见的。后人为了纪念他为人类所做出的成就,在他的墓地建立了大理石的墓碑,并且把他在瓦浮松达的旧居重新进行修整,按原样保存下来,以供后人瞻仰。

 

 

锂盐治病

 

锂虽然是一种人们不太熟悉的元素,然而它却普遍地存在于地壳之中,几乎在所有的火成岩中都能找到锂盐的痕迹,在许多矿泉水中也都含有锂盐。早在锂元素发现以前(1817 年由阿尔费德森发现),含锂盐的矿泉水具有治病的作用就已经为人们所认识。近代,锂盐在医疗上的应用也有了较大的发展,一个比较突出的例子就是碳酸锂(Li2CO3)可以用来治疗某些精神性疾病——癫狂症和精神压抑症。患有这种精神失调症的病人往往过分兴奋和过分压抑(交替发生),并且这种病在开始时往往没有任何发病的征兆。

一位澳大利亚的精神病学家卡特便是第一位试验利用锂的化合物来控制这种精神病的医生,卡特还汇编了一些医学科学上的难题,并指出锂的化合物在医学界的应用可能达到一个全盛的时期。当时,人们便已经知道用锂盐制成的药片可以用来减轻痛风病。1944 年卡特又发现,从某些英国的水井中取出来的水有助于治疗精神病,经过化验发现,这些井水中恰恰含有锂的化合物。

在寻找癫狂症——精神压抑证病因的过程中,卡特发现,由于甲状腺的过分活化或者过分不活化,则会引起这种精神失调症;在对患者进行临床观察时,卡特曾推测,有一种存在于尿中的物质可能是造成癫狂症和精神压抑症的主要原因。于是他就将某些癫狂病人的尿的试样有控制地注射到猪(医学上的试验动物)的腹腔中去,结果发现猪果然中毒了。他猜测这种毒性分子可能就是尿酸。然而当卡特进一步想用尿酸做试验时却碰到了具体的困难,因为尿酸在水中的溶解度低(每15000 克水中只能溶解1 克尿酸),于是他又考虑用尿酸盐来代替,其中尿酸锂的溶解度比较大(在380 克水中就能溶解1 克尿酸锂,是尿酸溶解度的40 倍)。当给试验过的猪注射尿酸锂溶液以后,卡特出乎意外的发现这种试验动物中毒性现象大大减低。这就说明锂离子可以抵御尿酸所产生的毒性。于是卡特进一步用碳酸锂代替尿酸锂,试验取得了更好的效果,这便有力的证明了锂盐具有治疗癫狂症和精神压抑症的作用。当用大量的0.5%碳酸锂水溶液对试验用猪进行注射后,这种试验动物大略经过2 小时的潜伏期以后,变得非常的无生气且感觉迟钝。只有当再用其他的药物对它刺激1~2 小时后,这些试验用猪才恢复了正常的活力。

1948 年后,卡特便开始把他的成果应用于临床试验,即用碳酸锂来治疗到他那儿就医的、有限的、比较合适的病人。在取得成功的那些病例中,有一个也是最引人注目的例子。这位患者已经51 岁,他处在慢性的癫狂性的兴奋状态足足已有5 年。他不肯休息一下,有时还要胡闹和捣乱,经常妨碍别人休息,因而成为被长期监护的对象。但是这位患者经过卡特医生三周的锂化合物的治疗以后,便开始安定下来,并且很快成为恢复期的病人。在以后,他又经过一段时间的观察,并继续服用了两个月的锂药剂,就完全康复了,并且很快地回到了原来的工作岗位。

自从1949 年以来,许多科普和技术性刊物对卡特的工作给予了高度的评价,认为锂盐疗法可能帮助10 万的患者从癫狂——精神压抑症的痛苦中解脱出来。并且很多制药工厂也相继生产出了碳酸锂。

从卡特的研究取得成功后,一直到今天为止,锂盐已经广泛地被用来治疗精神失调症,虽然锂的作用机理还有待于进一步探讨研究,但是它的治病效果却是肯定可靠的,并且也是非常惊人的。卡特的工作成果是十分宝贵的,因为他仅仅是用了一种简单的无机化合物,便能控制住难治的精神失调症,这在历史上也是一个奇迹。